			N	Aaywood, Los Angeles Cou				
					x. 6 - Personal Priva	.cv		
	Home:	<u>{</u>						
	Field Sample ID:	MWF-METALS-011 6/16/2016	MWF-METALS-012 6/16/2016	MWF-METALS-013 6/16/2016	MWF-METALS-014 6/16/2016	MWF-METALS-015 6/16/2016	MWF-METALS-016 6/16/2016	MWF-METALS-017 6/16/2016
	Sample Date: Laboratory Job	0/10/2010	0/10/2010	0/10/2010	0/10/2010	0/10/2010	0/10/2010	0/10/2010
	Number:	82565	82565	82565	82565	82565	82565	82565
	Adult / Child /							
_	Duplicate:		Duplicate		Duplicate		Duplicate	
Parameters	Units							
Metals / NIOSH-7303(1.16	0.911	0.972	0.795	1.01	0.974	1.56
Aluminum	μg/m ³	ND<0.25	ND<0.25	ND<0.25	0.793 ND<0.25	ND<0.25	0.974 ND<0.25	ND<0.25
Antimony	μg/m³ μg/m³	ND<0.25						
Arsenic		0.257	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25						
Beryllium		ND<0.25	and the second second	ND<0.25	ND<0.25			ND<0.25
Cadmium	, , , , 3	4.2 *	12.1 *	14.0 *	11.3 *	12.1 *	12.5 *	13.7 *
Calcium	μg/m³	114	0,354	ND<0.25	0,856 J	1.19	1.13	1,55
Chromium	μg/m ³	1.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cobalt	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	Z3 I	ND<0.23	0.333	0.532 J	ND~0,25	0.932 J	ND<0.25
Iron	μg/m ³	25		ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Lead	μg/m ³		2.61 J	2	0.23	0.860	0,770	1.07
Magnesium	μg/m³	63	ND<0.25	N	25	0.860 ND<0.25	ND<0.25	ND<0.25
Manganese	μg/m³	<0.25	ND<0.25	N 5	23	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m³	<0.25	ND<0.25	25	N	ND<0.25	ND<0.25	ND<0.25
Nickel		0.588 * J	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
Potassium	/3	0.388 * J ND<0.25	ND<0.25 ND<0.25	ND<0.25	ND<0,25	ND<0.25 ND<0.25	ND<0.25	ND<0.25 ND<0.25
Selenium	μg/m³	3.95	3.42	4,06 J	2.60 J	ND<0.25 4.93	4.75	5,80
Sodium	μg/m³	3.95 ND<0.25	3.42 ND<0.25	4.06 J ND<0.25	ND<0.25	4.93 ND<0.25	4.75 ND<0.25	5.80 ND<0.25
Thallium	μg/m ³	ND<0.25 ND<0.25	ND<0.25 ND<0.25	ND<0.25 ND<0.25	ND<0.25 ND<0.25	ND<0.25 ND<0.25		ND<0.25 ND<0.25
Vanadium	μg/m ³		·	· ·	· ·	· ·	ND<0.25	·
Zinc	μg/m³	0.496 J	0.272 J	0.343	0.422	0.266 J	6.12 J	0.326

DRAFT - DO NOT REPRODUCE

Notes:

Bold results exceed applicable limits for characteristic hazardous wastes ND=X= constituents(s) not detected at or above method detection limit
* = Target analyte was detected in the batch field blank(s) and subtracted by the field blank concentration per NIOSH Method 7300

J= analyte was detected. However, analyte concentration is an estimated value which is between the method detection limit (MDL) and the practical quantitation limit (PQL) μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

Table 1 **Draft Indoor Air Analytical Results** Fruitland Magnesium Fire Maywood, Los Angeles County, California

				• •	•								
			Ex. 6 - Personal Privacy										
	Home:	3575 E 52nd St Indoor Air	3575 E 52nd St Indoor Air	3575 E 52nd St Indoor Air	3563 E 52nd St Indoor Air	Air	Air	Air					
	Field Sample ID:	MWF-METALS-018	MWF-METALS-019	MWF-METALS-020	MWF-METALS-021	MWF-METALS-023	MWF-METALS-024	MWF-METALS-025					
	Sample Date:	6/16/2016	6/16/2016	6/16/2016	6/17/2016	6/17/2016	6/17/2016	6/17/2016					
	Laboratory Job												
	Number:	02000	82565	82565	82565	82565	82565	82565					
	Adult / Child /												
	Duplicate:	Duplicate		Duplicate									
Parameters	Units												
Aetals / NIOSH-7303(N	(I)												
Muminum	$\mu g/m^3$	1.21	1.32 J	2.18 J	0.927	1.48	0.948	0.929					

Alumnum	μg/m	1.21	1.52 3	2.103	0.527	1.70	0.540	0.525
Antimony	μg/m³	ND<0.25						
Arsenic	μg/m³	ND<0.25						
Barium	μg/m³	ND<0.25						
Beryllium	/_3	ND<0.25						
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	11.3 *	11.4 *	5.66 *	7.70 *	6.86 *	5.26 *	4.58 *
Chromium	μg/m³	5	ND<0.25	0.880 J	0.323	ND<0.25	ND<0.25	0.66
Cobalt	μg/m³).25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	μg/m³	25		1.46	1.10		0.841	ND<0.25
Lead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m³	0	ND<0.2	ND:	76	ND<0.25	ND<0.25	ND<0.25
Manganese	μg/m³	0.25	ND<0.25	NI	25	1.32	ND<0.25	ND<0.25
Molybdenum	μg/m³	< 0.25	ND<0.25	N 5	1 5	ND<0.25	ND<0.25	ND<0.25
Nickel	4 3	ND<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25
Potassium		ND<0.25	0.620 J	0.25	1.	2.07	1.16	0.870
Selenium	μg/m³	ND<0.25						
Sodium	μg/m³	6.12	5.67	5.42	4.38 *	7.72 *	5.74 *	4.93 *
Thallium	μg/m³	ND<0.25						
Vanadium	μg/m³	ND<0.25						
Zinc	μg/m³	0.304	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE

			N	Maywood, Los Angeles Co						
	Home:	Ex. 6 - Personal Privacy								
	Field Sample ID:	MWF-METALS-026	MWF-METALS-027	MWF-METALS-028	MWF-METALS-029	MWF-METALS-030	MWF-METALS-044	MWF-METALS-045		
	Sample Date:	6/17/2016	6/18/2016	6/18/2016	6/18/2016	6/18/2016	6/22/2016	6/22/2016		
	Laboratory Job									
	Number: Adult / Child /	82565	82565	82565	82565	82565	82731	82731		
	Duplicate:									
Parameters	Units									
Aetals / NIOSH-7303	(M)				<u> </u>					
Aluminum	μg/m ³	0.829	0.767 *	0.419 *	0.491 *	0.471 *	ND<0.25	0.437		
Antimony	$\mu g/m^3$	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Barium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Beryllium	/3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25		
Calcium	μg/m³	3.41 *	4.14 *	3.66 *	ND<0.25	ND<0.25	1.74 *	2.52 *		
Chromium	μg/m³	0.25	ND<0.25	ND<0.25	0.519 *	ND<0.25 *	0.272 *	0.375 *		
Cobalt	$\mu g/m^3$	1.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
ron	μg/m³	25		ND<0.7	3.85		ND<0.25	1.31		
ead	$\mu g/m^3$	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25		
Magnesium	μg/m³	.25	ND<0,2	ND;	12	0.366	0.592	0.970		
fanganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25		
4olybdenum	μg/m³	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25		
lickel	/ 3	ND<0.25	ND<0.25	.25	NA NA	ND<0.25	ND<0.25	ND<0.25		
otassium		ND<0.25	0.683	0.25	ND-	ND<0.25	0.846	2.07		
elenium	μg/m³	ND<0.25	ND<0.25	ND<0,25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
odium	μg/m³	3.72 *	3.33 *	3.44 *	0.763 *	1.47 *	ND<0.25	2.58		
hallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Zinc	μg/m³	ND<0.25	ND<0,25	ND<0,25	ND<0,25	ND<0,25	ND<0,25	ND<0,25		

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

			N	Aaywood, Los Angeles Cou	nty, California			
		ſ						
	Home:			EX. 6	6 - Personal Pr			
	Field Sample ID:	MWF-METALS-048	MWF-METALS-049	MWF-METALS-050	MWF-METALS-051	MWF-METALS-052	MWF-METALS-053	MWF-METALS-056
	Sample Date:	6/22/2016	6/22/2016	6/22/2016	6/22/2016	6/22/2016	6/22/2016	6/23/2016
	Laboratory Job Number:	82731	82731	82731	82731	82731	82731	82746
	Adult / Child /	62/31	02/31	02731	02/31	02/31	02/31	02740
	Duplicate:	Adult	Child	Adult	Child	Adult	Child	Adult
Parameters	Units							
Metals / NIOSH-7303(N	M)							
Aluminum	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	0.495	ND<0.25	0.612
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	/ · 3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	.22 *	2.49 *	2.05 *	1.07 *	3.36 *	2.13 *	2.29 *
Chromium	μg/m³	7 *	0.338 *	ND<0.25 *	ND<0.25 *	0.296 *	0.306 *	0.905
Cobalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Iron	μg/m ³	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
Lead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m ³	2	0,656	0.	10	0.556	0.440	0.657
Manganese	μg/m ³	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m ³	< 0.25	ND<0.25	N	N 5	ND<0.25	ND<0.25	ND<0.25
Nickel	/ 3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
Potassium		0.698	1.22	32	1.	1.37	1.02	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Sodium	μg/m³	ND<0.25	0.588	ND<0.25	ND<0.25	0.560	ND<0.25	3.19
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	0.352	ND<0.25	ND<0.25	ND<0.25	ND<0.25	0.437

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

		N	0				
Home:			Ex. 6	6 - Personal P	rivacy		
Field Sample ID:	MWF-METALS-057	MWF-METALS-058	MWF-METALS-059	MWF-METALS-060	MWF-METALS-061	MWF-METALS-062	MWF-METALS-063
Sample Date:	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016
,	00014	0.00	0.24	00=14	00=14	00=46	00.00
	827/46	82746	82746	82746	82746	82/46	82746
Duplicate:	Child	Adult	Child	Adult	Child	Adult	Child
Units							
(M)							
μg/m³	0.351	0.459	0.619	0.573	0.335	0.294	ND<0.25
μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
4.3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
	ND<0.25		ND<0.25	ND<0.25			ND<0.25
$\mu g/m^3$.30 *	1.17 *	0.943 *	0.442 *	0.433 *	ND<0.25	0.506 *
μg/m ³	32	0.323	0.477	0.848	0.472	0.778	0.752
$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
$\mu g/m^3$	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
$\mu g/m^3$	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
	0	0.502	0.	56	0.315	0.425	0.440
	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
,	< 0.25	ND<0.25	N .5	1 5	ND<0.25	ND<0.25	ND<0.25
3	ND<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25
	ND<0.25	ND<0.25	0.25	ND	ND<0.25	ND<0.25	ND<0.25
μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
	1.83	1.30	2.19	0.920	ND<0.25	0.289	0.918
	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0,25
	Field Sample ID: Sample Date: Laboratory Job Number: Adult / Child / Duplicate: Units (M)	Field Sample 1D: Sample Date: Laboratory Job Number: Adult / Child / Duplicate: Units (M) μg/m³ 0.351 μg/m³ ND<0.25 μg/m³ ND<0.25 μg/m³ 25 μg/m³ 36 μg/m³ 10 μg/m³ 183 μg/m³ 10 μ	Home:	Home:	Field Sample ID: MWF-METALS-057 MWF-METALS-058 MWF-METALS-060 Sample Date: 6/23/2016 6/23/2016 6/23/2016 6/23/2016 Laboratory Job Number: 82746 82746 82746 82746 Adult / Child Duplicate: Child Adult Child Adult	Home: Ex. 6 - Personal Privacy Field Sample Dz: MWF-METALS-058 MWF-METALS-060 MWF-METALS-060 MWF-METALS-061 6/23/2016 6/	Home

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

0.915

ND<0.25

ND<0.25

0.33

0.25

D<0.25

ND<0.25

ND<0.25

1.03

ND<0.25

ND<0.25

ND<0.25

ND<0.25

ND<0.25

ND<0.25

ND<0.25

ND<0.25

1.42

ND<0.25

ND<0.25

ND<0.25

Table 1 Draft Indoor Air Analytical Results Fruitland Magnesium Fire Maywood, Los Angeles County, California

	Home:			Ex.	6 - Personal Priv	acy		
	Field Sample ID:	MWF-METALS-064	MWF-METALS-065	MWF-METALS-066	MWF-METALS-067	MWF-METALS-070	MWF-METALS-071	MWF-METALS-072
	Sample Date:	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016
	Laboratory Job Number:	82746	82746	82746	82746	82746	82746	82746
	Adult / Child / Duplicate:	Adult	Child			Adult	Child	Adult
Parameters	Units							
Aetals / NIOSH-7303(N	1)							
Juminum	μg/m ³	0.362	0.329	ND<0.25	ND<0.25	0.278	0.400	0.348
ntimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
rsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
arium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
eryllium	3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25
admium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	ug/m³	1.56 *	0.849 *	1.18*	4.10 *	3.20 *	2.18 *	1.18 *

0.548

ND<0.25

D<0.25

D<0.25

ND<0.25

0.411

ND<0.25

ND<0.25

1.05

0.458

ND<0.25

ND<0.25

0.462

ND<0.25

ND<0.25

ND<0.25

ND<0.25

ND<0.25

0.960

ND<0.25

ND<0.25

ND<0.25

0.411

ND<0.25

ND<0.25

ND<0.25

ND<0.25

1.62

ND<0.25

ND<0.25

ND<0.2

ND<0.25

ND<0.25

0.846

ND<0.25

ND<0.25

ND<0.25

0.409

ND<0.25

ND<0.2

ND<0.25

0.457

ND<0.25

ND<0.25

ND<0.25

ND<0

ND<

Zinc Notes:

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Potassium

Selenium

Sodium

Thallium

Vanadium

Nickel

Molybdenum

Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc *= Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot µg/kg = microgram per kilogram µg/m³ = microgram per cubic meter

μg/m³

μg/m³

μg/m³

μg/m³

μg/m

μg/m

μg/m

μg/m³

μg/m³

μg/m³

μg/m³

μg/m

μg/m³

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE

0.407

ND<0.25

ND<0.25

ND<0.25

ND<0.25

0.457

ND<0.25

ND<0.25

ND<0.25

ND<0.25

ND<0.25

0.575

ND<0.25

ND<0.25

0.987

			N	Aaywood, Los Angeles Cou	inty, California			
	Ex. 6 - Personal Privacy							
	Field Sample ID:	MWF-METALS-073	MWF-METALS-074	MWF-METALS-075	MWF-METALS-076	MWF-METALS-077	MWF-METALS-078	MWF-METALS-079
	Sample Date:	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016
	Laboratory Job							
	Number:	82746	82746	82746	82746	82746	82746	82746
	Adult / Child / Duplicate:	Child	Adult	Child	Adult	Child	Adult	Child
Parameters	Units	Cina	raut	Ciniu	Adult	Ciniu	rituit	Cinu
Metals / NIOSH-7303	5(M)					<u> </u>		
Aluminum	μg/m³	0.465	0.573	0.333	ND<0.25	0.345	0.383	0.372
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	.23 *	1.95 *	1.92 *	1.48 *	ND<0.25 *	0.965 *	2.75 *
Chromium	μg/m ³	56	0.442	0.481	0.47	0.417	0.475	0.483
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m³	25		ND<0.1	D<0.25		ND<0.25	ND<0.25
ead	μg/m³	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
/agnesium	μg/m ³	1	0.710	0.7	82	1.25	0.716	0.854
Manganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	μg/m³	< 0.25	ND<0.25	N .5	i 5	ND<0.25	ND<0.25	ND<0.25
Vickel		ND<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND	ND<0.25	ND<0.25	ND<0.25
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m³	0.960	0.839	4.51	0.384	ND<0.25	0.646	1.84
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	0.619	16.3	1.02	6.16	0.306	ND<0.25	0.509

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

			N	Maywood, Los Angeles Con					
	Home:	Ex. 6 - Personal Privacy							
	Field Sample ID:	MWF-METALS-082	MWF-METALS-083	MWF-METALS-084	MWF-METALS-085	MWF-METALS-086	MWF-METALS-087	MWF-METALS-088	
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	
	Laboratory Job								
	Number: Adult / Child /	82851	82851	82851	82851	82851	82851	82851	
	Duplicate:	Adult	Child	Child	Adult	Adult	Child	Adult	
Parameters	Units	Huut	Cinu	Cina	Tituit	- Addit	Ciniu	Tituli	
1etals / NIOSH-7303	(M)			<u> </u>	<u> </u>			<u> </u>	
Muminum	μg/m³	2.77 *	1.83 *	2.08 *	1.58 *	2.85 *	2.44 *	0.273 *	
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Beryllium	3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25	
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25	
Calcium	$\mu g/m^3$	3.22 *	1.64 *	2.50 *	1.22 *	3.59 *	1.35 *	0.965 *	
Chromium	μg/m³	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25	ND<0.25 *	
obalt	$\mu g/m^3$	1.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
ron	μg/m ³			ND<0.7	D<0.25		ND<0.25	ND<0.25	
ead	μg/m³	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25	
/agnesium	μg/m³	*	ND<0,23	0.2	2.25 *	0.349 *	0.191 *	ND<0.25 *	
fanganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25	
Molybdenum	μg/m ³	< 0.25	ND<0.25	N 5	1 5	ND<0.25	ND<0.25	ND<0.25	
lickel	/ 3	ND<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25	
otassium		ND<0.25	ND<0.25	0.25 *	ND-	ND<0.25	ND<0.25	ND<0.25	
Selenium	μg/m³	ND<0.25	ND<0,25	ND<0.25	ND<0.25	ND<0.25	ND<0,25	ND<0.25	
odium	μg/m ³	20.3	17.6	18.0	14.9	18.7	16.0	2.02	
hallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	
Zinc	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

Table 1 **Draft Indoor Air Analytical Results** Fruitland Magnesium Fire ood, Los Angeles County, California

				Maywood, Los Angeles Cou	nty, California			
	Home: 3		<u> </u>	Ex. 6	- Personal Pı	ivacy	L	
	Field Sample ID:	MWF-METALS-089	MWF-METALS-090	MWF-METALS-091	MWF-METALS-092	MWF-METALS-093	MWF-METALS-094	MWF-METALS-095
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016
	Laboratory Job Number:	82851	82851	82851	82851	82851	82851	82851
	Adult / Child /	61.11.1	61.01		4.7.	4.4.4.	61.11.1	
D	Duplicate: Units	Child	Child	AdultDuplicate	Adult	Adult	Child	
Parameters Metals / NIOSH-7303(
Metals / NIOSH-7303(Aluminum	μg/m ³	ND<0.25 *	0.328 *	0.456 *	0.284 *	0.379 *	ND<0.25 *	0.359 *
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Bervllium	73	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25	Marie Contraction of the Contrac	ND<0.25	ND<0.25			ND<0.25
Calcium	μg/m³	.18 *	4.23 *	1.86 J	1.39 *	2.05 *	0.443 *	0.469 *
Chromium	μg/m³	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25	ND<0.25 *
Cobalt	μg/m³).25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m³	25		0.499	9.522 J		ND<0.25	0.558 J
ead	μg/m³	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
/lagnesium	μg/m³	25 *	ND<0.23	0.4	58 J	0.561 J	ND<0.25	0.487 *
Aanganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Aolybdenum	μg/m³	< 0.25	ND<0.25	N 25	N 5	ND<0.25	ND<0.25	ND<0.25
lickel	/ 3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25 *	7 Ј	ND<	ND<0.25	ND<0.25	ND<0.25
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m³	ND<0.25	1.37	3.13 J	1.90	2.98	0.720	2.56
hallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
⁷ anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abe * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			N	Aaywood, Los Angeles Cou				
	Home:			Ex. 6	- Personal P	rivacy		
	Field Sample ID:	MWF-METALS-096	MWF-METALS-097	MWF-METALS-098	MWF-METALS-099	MWF-METALS-100	MWF-METALS-101	MWF-METALS-102
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016
	Laboratory Job							
	Number: Adult / Child /	82851	82851	82851	82851	82851	82851	82851
	Duplicate:	Child	Adult	Child	Child	Adult	Adult	Child
Parameters	Units	- Cina	114411	Ciniu		11441	114411	Cina
Aetals / NIOSH-7303	(M)			•	•			•
Aluminum	μg/m ³	ND<0.25 *	0.276 *	0.285 *	0.607 *	ND<0.25 *	1.55 *	0.311 *
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium		ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	602 *	0.966 *	ND<0.25 *	1.01 *	0.667 *	1.75 *	0.366 *
Chromium	$\mu g/m^3$	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25	ND<0.25 *
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	μg/m³	25		ND<0.1	D<0.25		ND<0.25	ND<0.25
ead	μg/m³	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m ³	*	0.406	0.3	\$2 *	0.265 *	0.596 *	ND<0.25 *
1anganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
/olybdenum	μg/m ³	< 0.25	ND<0.25	N	1 5	ND<0.25	ND<0.25	ND<0.25
Vickel		ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m ³	1.45	2.70	1.45	2.97	0.595	ND<0.25	0.762
Thallium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

Table 1 **Draft Indoor Air Analytical Results**

			I	Fruitland Magnesiu Maywood, Los Angeles Cou				
	Home:			Ex.	l 6 - Personal Pr	ivacy		<u> </u>
	Field Sample ID:	MWF-METALS-103	MWF-METALS-104	MWF-METALS-105	MWF-METALS-106	MWF-METALS-109	MWF-METALS-110	MWF-METALS-111
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/24/2016 82851 ChildDuplicate	6/24/2016 82851
	Laboratory Job Number:	82851	82851	82851	82851	82851		
	Adult / Child / Duplicate:	ChildDuplicate	Adult	Child	Adult	Adult		Child
Parameters	Units							
Ietals / NIOSH-7303(`-		_	_				
luminum	μg/m ³	ND<0.25 *	ND<0.25 *	0.406 J	ND<0.25 *	0.402 *	0.360 *	0.362 *
ntimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
rsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
arium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
eryllium	(-3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
admium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
alcium	$\mu g/m^3$	<0.25 *	0.979 *	0.354 *	2.93 *	1.26 J	1.58 J	2.44 J
hromium	$\mu g/m^3$	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25	ND<0.25 *
obalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
opper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
on	$\mu g/m^3$	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
ead	$\mu g/m^3$	25	Nb	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25
agnesium	μg/m³	*	ND<0.23	ND<	2.25 *	ND<0.25 *	ND<0.25	0.554 J
Ianganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
olybdenum	μg/m ³	< 0.25	ND<0.25	N .5	j 5	ND<0.25	ND<0.25	ND<0.25
ickel	4.3	ND<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25 J
lenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m³	1.61	0.814	1.22	ND<0.25	0.807 J	1.92 J	6.57
hallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
'inc	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot $\mu g/kg = microgram per kilogram$ $\mu g/m^3 = microgram per cubic meter$

DRAFT - DO NOT REPRODUCE

			Ŋ	Maywood, Los Angeles Cou						
	Home:	Ex. 6 - Personal Privacy								
	Field Sample ID:	MWF-METALS-112	MWF-METALS-113	MWF-METALS-114	MWF-METALS-115	MWF-METALS-122	MWF-METALS-123	MWF-METALS-124		
	Sample Date:	6/24/2016	6/24/2016	6/24/2016	6/24/2016	6/25/2016	6/25/2016	6/25/2016		
	Laboratory Job Number:									
	Adult / Child /	82851	82851	82851	82851	82856	82856	82856		
	Duplicate:	Child	Adult	AdultDuplicate	ChildDuplicate	Adult	Adult	Child		
Parameters	Units			,						
Metals / NIOSH-7303(M)		•	•			•	•		
Aluminum	μg/m³	0.275 J	ND<0.25 *	ND<0.25 *	0.471 J	ND<0.25	ND<0.25	0.279		
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Beryllium	/3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25	ND<0.25		
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25		
Calcium	μg/m³	3.01 J	1.33 J	0.893 J	0.760 J	ND<0.25	ND<0.25	1.59 *		
Chromium	μg/m³	0.25 *	ND<0.25 *	ND<0.25 *	ND<0.25 *	0.383	0.263	0.336		
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
ron	μg/m³	25		ND<0.1	D<0.25		ND<0.25	ND<0.25		
_ead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25		
Magnesium	μg/m³	*	0.314	0.3	∀ 0 *	0.481	0.352	0,325		
Manganese	μg/m³	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25		
Molybdenum	μg/m ³	< 0.25	ND<0.25	N .5	N 5	ND<0.25	ND<0.25	ND<0.25		
Nickel	, 3	ND<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25		
otassium		ND<0.25	ND<0.25	0.25	ND	ND<0.25	ND<0.25	ND<0.25		
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0,25	ND<0.25	ND<0.25		
odium	μg/m ³	6.05 J	4.89	4.22	0.807 J	ND<0.25	ND<0.25	ND<0.25		
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25		

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE

Table 1 Draft Indoor Air Analytical Results Fruitland Magnesium Fire

			Ŋ	Aaywood, Los Angeles Cou							
	Home:	Ex. 6 - Personal Privacy									
	Field Sample ID:	MWF-METALS-125	MWF-METALS-126	MWF-METALS-127	MWF-METALS-128	MWF-METALS-129	MWF-METALS-130	MWF-METALS-131			
	Sample Date:	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016			
	Laboratory Job										
	Number: Adult / Child /	82856	82856	82856	82856	82856	82856	82856			
	Duplicate:	Child	Child	Adult	Child	AdultDuplicate	ChildDuplicate	Child			
Parameters	Units										
Metals / NIOSH-7303	B(M)		•	•	•						
Aluminum	μg/m³	1.67	ND<0.25	0.376	0.672	ND<0.25	ND<0.25	ND<0.25			
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Beryllium	1.3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25	ND<0.25			
Cadmium		ND<0.25		ND<0.25	ND<0.25	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		ND<0.25			
Calcium	μg/m³	P<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Chromium	μg/m³	365	0.367	0.391	0,342	0.342	0.362	0.311			
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
ron	μg/m³	25		ND<0.7	D<0.25		ND<0.25	0.423			
ead	μg/m ³	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25			
Magnesium	μg/m ³	8	0.623	0.	03	0.498	0.468	0.613			
Manganese	μg/m ³	0.25	ND<0.25	NΓ	25	ND<0.25	ND<0.25	ND<0.25			
Molybdenum	μg/m³	< 0.25	ND<0.25	N 5	1 5	ND<0.25	ND<0.25	ND<0.25			
Nickel	, 3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25			
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25			
Selenium	μg/m³	ND<0.25	ND<0,25	ND<0.25	ND<0.25	ND<0.25	ND<0,25	ND<0.25			
Sodium	μg/m³	1.17	ND<0.25	0.752	0.576	ND<0.25	ND<0.25	ND<0.25			
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
√anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0,25	ND<0.25	ND<0.25			

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

			N	Aaywood, Los Angeles Cou							
	Home:	Ex. 6 - Personal Privacy									
	Field Sample ID:	MWF-METALS-132	MWF-METALS-133	MWF-METALS-134	MWF-METALS-135	MWF-METALS-136	MWF-METALS-137	MWF-METALS-138			
	Sample Date:	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016			
	Laboratory Job										
	Number: Adult / Child /	82856	82856	82856	82856	82856	82856	82856			
	Duplicate:	Adult	Child	ChildDuplicate	Child	Adult	Adult	Adult			
Parameters	Units			omuz apatuto		12001					
Metals / NIOSH-7303	6(M)		•	•	•	•					
Aluminum	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Beryllium	/_3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25			
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25			
alcium	$\mu g/m^3$	Q <0.25	ND<0.25	1.54 *	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Chromium	μg/m³	56	0.404	0.31	0.361	0.258	ND<0.25	0.368			
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
ron	μg/m³	25		ND<0.7	D<0.25		ND<0.25	ND<0.25			
ead	$\mu g/m^3$	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25			
1agnesium	$\mu g/m^3$	8	0.566	0.	02	0.478	0.610	0.596			
1anganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25			
Aolybdenum	μg/m³	< 0.25	ND<0.25	N	ñ 5	ND<0.25	ND<0.25	ND<0.25			
lickel		ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25			
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25			
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
odium	μg/m ³	ND<0.25	1.52	3.38	3.72	2.39	2.32	ND<0.25			
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

			I	Maywood, Los Angeles Cou	inty, California						
	Ноте:	Ex. 6 - Personal Privacy									
	Field Sample ID:	MWF-METALS-139	MWF-METALS-140	MWF-METALS-141	MWF-METALS-142	MWF-METALS-143	MWF-METALS-144	MWF-METALS-145			
	Sample Date:	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/25/2016	6/26/2016	6/26/2016			
	Laboratory Job Number:										
	Adult / Child /	82856	82856	82856	82856	82856	82856	82856			
	Duplicate:	Child	Child	Adult	AdultDuplicate	Adult	Adult	Child			
Parameters	Units	2	23334			124417	124414	,			
Metals / NIOSH-7303((M)			•	<u> </u>			<u> </u>			
Aluminum	μg/m ³	0.890	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Beryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25			
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25			
Calcium	μg/m³	Q<0.25	ND<0.25	0.424 *	0.301 *	1.71 *	1.24 *	ND<0.25			
Chromium	μg/m ³	182	0.331	0.315	0.43	0.318	0.298	ND<0.25			
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Copper	μg/m ³	25	ND<0.25	ND<0.2	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
ron	$\mu g/m^3$	25		ND<0.7	D<0.25		ND<0.25	ND<0.25			
_ead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25			
Magnesium	μg/m ³	5	0.730	0.	83	0.658	0.608	0.319			
Aanganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25			
Molybdenum	μg/m ³	< 0.25	ND<0.25	N 5	1 5	ND<0.25	ND<0.25	ND<0.25			
Nickel	, 3	ND<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25			
otassium		ND<0.25	ND<0.25	0.25	ND.	ND<0.25	ND<0.25	ND<0.25			
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
odium	μg/m ³	4.06	0.700	6,90	5.31	4.79	ND<0.25	1.72			
Thallium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
inc	μ _O ·III	115 0.25	115 -0.25	115 40.25	115 40.25	11.5 40.23	11,5 40.23	1.0 -0.23			

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE Table 1 DRAFT - DO NOT REPRODUCE

Draft Indoor Air Analytical Results Fruitland Magnesium Fire

			I	Fruitland Magnesii Maywood, Los Angeles Cou				
	Ex. 6 - Personal Privacy							
	Field Sample ID:	MWF-METALS-150	MWF-METALS-151	MWF-METALS-152	MWF-METALS-153	MWF-METALS-154	MWF-METALS-155	MWF-METALS-156D
	Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016
	Laboratory Job Number:	82949	82949	82949	82949	82949	82949	82949
	Adult / Child /	02747	02747	02/4/	02747	02747	02747	02747
	Duplicate:	Child	Adult	ChildDuplicate	AdultDuplicate	Adult	Child	AdultDuplicate
Parameters	Units							
Metals / NIOSH-7303	(M)							
Aluminum	μg/m³	1.22	0.800	0.522	1.03	ND<0.25	ND<0.25	1.29
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Beryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25	ND<0.25
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25
Calcium	$\mu g/m^3$	8.82	5.53	7.11	6.92	2.10	3.97	3.52
Chromium	μg/m ³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Cobalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
ron	$\mu g/m^3$	25		ND<0.7	D<0.25		ND<0.25	ND<0.25
ead	$\mu g/m^3$	25	ND	ND<0	< 0.25	ND<0.25	ND<0.25	ND<0.25
Magnesium	μg/m ³		1.56	1	69	0.596	1.50	0.818
/Janganese	$\mu g/m^3$	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25
Molybdenum	$\mu g/m^3$	< 0.25	ND<0.25	N 5	j 5	ND<0.25	ND<0.25	ND<0.25
Vickel		ND<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25
otassium		ND<0.25	ND<0.25	0.25	0.	ND<0.25	ND<0.25	ND<0.25
elenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
odium	μg/m ³	12.8	9.51	9.18	12.1	3.50	5.07	5.40
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
/anadium	μg/m³	0.332	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25
Zinc	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

			N	Aaywood, Los Angeles Cou							
	Home:	Ex. 6 - Personal Privacy									
	Field Sample ID:	MWF-METALS-157D	MWF-METALS-158	MWF-METALS-159	MWF-METALS-160	MWF-METALS-161	MWF-METALS-162	MWF-METALS-163			
	Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016			
	Laboratory Job										
	Number: Adult / Child /	82949	82951	82951	82951	82951	82951	82951			
	Duplicate:	ChildDuplicate	Child	Adult	ChildDuplicate	AdultDuplicate	Adult	Child			
Parameters	Units		2		omaz apatato			0			
Metals / NIOSH-7303	(M)			•	•		•	•			
Aluminum	μg/m³	0.465	1.07	1.16	ND<0.25	0.283	0.403	0.556			
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Beryllium	3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND-0.25	ND-0.25	ND<0.25			
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25			
Calcium	μg/m³	5.38	4.20	2.98	3.43	2.62	4.31	3.96			
Chromium	μg/m³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Cobalt	μg/m³	.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Copper	μg/m³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
ron	μg/m³	25		ND<0.	D<0.25		ND<0.25	ND<0.25			
ead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25			
Magnesium	μg/m³	9	1.13	0.9	93	1.11	1.63	1.58			
/langanese	μg/m ³	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25			
Molybdenum	μg/m³	< 0.25	ND<0.25	N	1 5	ND<0.25	ND<0.25	ND<0.25			
Vickel	, 3	ND<0.25	ND<0.25	.25	NA	ND<0.25	ND<0.25	ND<0.25			
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25			
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
odium	μg/m³	6.07	8.78	8.63	8.31	7.14	12.1	9,59			
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE Table 1 DRAFT - DO NOT REPRODUCE

Draft Indoor Air Analytical Results Fruitland Magnesium Fire

			N	Maywood, Los Angeles Cou							
	Home:	Ex. 6 - Personal Privacy									
	Field Sample ID:	MWF-METALS-164	MWF-METALS-165	MWF-METALS-166	MWF-METALS-167	MWF-METALS-168D	MWF-METALS-169D	MWF-METALS-170			
	Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016			
	Laboratory Job										
	Number: Adult / Child /	82951	82951	82951	82951	82951	82951	82954			
	Duplicate:	AdultDuplicate	ChildDuplicate	Adult	Child	AdultDuplicate	ChildDuplicate	Adult			
Parameters	Units					· · · · · · · · · · · · · · · · · · ·	,				
Metals / NIOSH-7303	(M)		•								
Aluminum	μg/m ³	0.732	0.509	3.07	3.14	2.68	2.47	0.714			
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Beryllium	4.3	ND<0.25	ND-0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25			
Calcium	$\mu g/m^3$	5.74	5.59	39.8	34.9	27.5	27.5	5.42			
Chromium	$\mu g/m^3$	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Iron	μg/m³	25		ND<0.7	(D<0.25		ND<0.25	0.822			
Lead	μg/m³	25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25			
Magnesium	μg/m³		1.84	3	80	2.81	2.84	0.792			
Manganese	μg/m³	0.25	ND<0.25	NI	25	ND<0.25	ND<0.25	ND<0.25			
Molybdenum	μg/m ³	< 0.25	ND<0.25	N	1 5	ND<0.25	ND<0.25	ND<0.25			
Nickel	4 3	AD<0.25	ND<0.25	.25	NI	ND<0.25	ND<0.25	ND<0.25			
Potassium		ND<0.25	ND<0.25	0.25	ND ²	ND<0.25	ND<0.25	ND<0.25			
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0,25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Sodium	μg/m ³	11.6	12.2	8.46	7.49	8.57	9.41	3.62			
Thallium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Zinc	μg/m³	ND<0.25	ND<0,25	ND<0.25	0.254	ND<0.25	ND<0.25	0.484			

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abc * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot μ g/kg = microgram per kilogram μ g/m³ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

Table 1 **Draft Indoor Air Analytical Results** Fruitland Magnesium Fire

			1	Maywood, Los Angeles Coi	ınty, California						
	Home:	Ex. 6 - Personal Privacy									
	Field Sample ID:	MWF-METALS-171	MWF-METALS-172	MWF-METALS-173	MWF-METALS-174D	MWF-METALS-175D	MWF-METALS-176	MWF-METALS-177			
	Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016			
	Laboratory Job										
	Number: Adult / Child /	82954	82954	82954	82955	82955	82955	82955			
	Duplicate:	Child	Child	Adult	ChildDuplicate	AdultDuplicate	Adult	Child			
Parameters	Units	Cina	- Cimu	77447	оппав присте	Traute apricate	114411	Cinia			
Metals / NIOSH-7303(M)		<u> </u>		•						
Aluminum	μg/m³	0.349	0.608	0.799	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	0.510	ND<0.25	ND<0.25	ND<0.25			
Beryllium	-/3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25			
Calcium	μg/m ³	5.24	6.67	7.33	ND<0.25	ND<0.25	0.467	1.04			
Chromium	μg/m³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Cobalt	$\mu g/m^3$.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Copper	μg/m ³	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
ron	μg/m³			0.917	D<0.25		ND<0.25	ND<0.25			
ead	$\mu g/m^3$	25	0.	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25			
Magnesium	$\mu g/m^3$		1.32	1,	56	0.642	0.860	0.814			
Manganese	$\mu g/m^3$	0.25	ND<0.25	ND	25	ND<0.25	ND<0.25	ND<0.25			
Molybdenum	μg/m ³	< 0.25	ND<0.25	N 5	N 5	ND<0.25	ND<0.25	ND<0.25			
Nickel	/ 3	AD<0.25	ND<0.25	25	NI	ND<0.25	ND<0.25	ND<0.25			
otassium		ND<0.25	ND<0.25	0.25	ND-	ND<0.25	ND<0.25	ND<0.25			
Selenium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Sodium	μg/m ³	3.87	7.23	6.88	2.46	2.90	3.78	4.10			
Thallium	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Zinc	μg/m³	ND<0,25	ND<0.25	0,313	ND<0,25	ND<0,25	ND<0.25	ND<0,25			
inc	μς/111	110 -0.23	110 -0,25	0,515	115 -0,25	110 -0,23	115 -0.25	110 -0,23			

Notes: Bold results exceed applicable limits for chara ND=X = constituents(s) not detected at or abe * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot $\mu g/kg$ = microgram per kilogram $\mu g/m^3$ = microgram per cubic meter

	Home: Field Sample ID:		I		[1					
	•	Ex. 6 - Personal Privacy									
1		MWF-METALS-178	MWF-METALS-179	MWF-METALS-190	MWF-METALS-191	MWF-METALS-192D	MWF-METALS-193D	MWF-METALS-202			
	Sample Date:	7/2/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016	6/27/2016			
	Laboratory Job										
	Number: Adult / Child /	82955	82955	82955	82955	82955	82955	82873			
	Duplicate:	Adult	Child	Adult	Child	AdultDuplicate	ChildDuplicate	Adult			
Parameters	Units		Ciniu	114411	Cina	Traute apricate	omas apricate	77447			
Metals / NIOSH-7303(M	<u> </u>										
Aluminum	μg/m³	ND<0.25	0.414	ND<0.25	ND<0.25	ND<0.25	ND<0.25	0.376 *			
Antimony	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Barium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Beryllium	3	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND-0.25	ND<0.25			
Cadmium		ND<0.25		ND<0.25	ND<0.25			ND<0.25			
Calcium	μg/m ³	846	1.65	0.611	0.762	ND<0.25	0.714	1.90 *			
Chromium	μg/m ³	0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Cobalt	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Copper	$\mu g/m^3$	25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
ron	μg/m ³	1 25		ND<0.7	D<0.25		ND<0.25	0.460			
Lead	μg/m³	1 25	ND	ND<0	<0.25	ND<0.25	ND<0.25	ND<0.25			
Magnesium	μg/m³		0.784	0.4	194	0.536	0.535	0,523 *			
Manganese	μg/m ³	0.25	ND<0.25	NΓ	25	ND<0.25	ND<0.25	ND<0.25			
Molybdenum	$\mu g/m^3$	< 0.25	ND<0.25	N 5	1 5	ND<0.25	ND<0.25	ND<0.25			
Nickel	3	D<0.25	ND<0.25	.25	N	ND<0.25	ND<0.25	ND<0.25			
Potassium		ND<0.25	ND<0,25	0,25	ND	ND<0,25	ND<0.25	ND<0.25			
Selenium	μg/m³	ND<0.25	ND<0,25	ND<0,25	ND<0.25	ND<0,25	ND<0.25	ND<0.25			
Sodium	μg/m³	2.39	3.51	2.68	2.52	2.02	2.46	2.94 *			
Challium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
/anadium	μg/m³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25			
Zinc	μg/m ³	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0,25	ND<0.25	ND<0.25			

Notes: Bold results exceed applicable limits for chara ND=X = constituents(s) not detected at or abe * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot $\mu g/kg$ = microgram per kilogram $\mu g/m^3$ = microgram per cubic meter

DRAFT - DO NOT REPRODUCE

DRAFT - DO NOT REPRODUCE Table 1 DRAFT - DO NOT REPRODUCE

Draft Indoor Air Analytical Results Fruitland Magnesium Fire Maywood, Los Angeles County, California

	Home:	Ex. 6 -	Personal	Privacy					
	Field Sample ID:	MWF-METALS-203	MWF-METALS-400	MWF-METALS-401					
	Sample Date:	6/27/2016	7/2/2016	7/2/2016					
	Laboratory Job								
	Number: Adult / Child /	82873	82955	82955					
	Duplicate:	Child	Adult	Child					
Parameters	Units	Ciniu	11441	Cina					
Metals / NIOSH-7303	(M)								
Aluminum	μg/m³	ND<0.25 *	ND<0.25	ND<0.25					
Antimony	μg/m³	ND<0.25	ND<0.25	ND<0.25					
Arsenic	μg/m³	ND<0.25	ND<0.25	ND<0.25					
Barium	μg/m³	ND<0.25	ND<0.25	0.498					
Beryllium		ND<0.25	ND<0.25	ND-0.25					
Cadmium		ND<0.25	ND<0.25						
Calcium	$\mu g/m^3$	ND<0.25 *	ND<0.25	ND<0.25					
Chromium	$\mu g/m^3$	ND<0.25	ND<0.25	ND<0.25					
Cobalt	$\mu g/m^3$	ND<0.25	ND<0.25	ND<0.25					
opper	$\mu g/m^3$	ND<0.25	ND<0.25	ND<0.25					
on		ND<0.7	D<0.25						
ead		ND<0	< 0.25	ND<0.25					
Magnesiur	μ	ND<	57	0.682					
Manganes	μg/m	NΓ	25	ND<0.25					
Molybden	μg/m ³	N 5	ñ 5	ND<0.25					
Nickel	$\mu g/m^3$.25	N	ND<0.25					
Potassium	μg/m ³	0.25	ND-	ND<0.25					
Selenium	μg/m³	ND<0,25	ND<0,25	ND<0.25					
Sodium	μg/m ³	ND<0.25 *	2.69	2.48					
Thallium	μg/m ³	ND<0.25	ND<0.25	ND<0.25					
Vanadium	μg/m³	ND<0.25	ND<0.25	ND<0.25					
Zinc	μg/m³	ND<0.25	ND<0.25	ND<0.25					

Notes: Bold results exceed applicable limits for chara ND<X = constituents(s) not detected at or abe * = Target analyte was detected in the batch fit J = analyte was detected. However, analyte cot $\mu g/kg$ = microgram per kilogram $\mu g/m^3$ = microgram per cubic meter